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1 Overview

The prime purpose of this project was to investigate various theoretical issues

concerning the integration of information across visual space. To date, most

of the research efforts in the study of the visual system seem to have been

focused in two almost non-overlaping directions. One research focus has

been the low level perception as studied by psychophysics. The other focus

has been the study of high level vision exemplified by the study of object

perception.

Most of the effort in psychophysics has been devoted to the search for

the fundamental "features" of perception. The general idea is that the most

peripheral processes of the visual system decompose the input into features

that are then used for classification and recognition. The experimental and

theoretical focus has been on finding and describing these analyzers that de-

compose images into useful components. Various models are then compared

to the physiological measurements performed on neurons in the sensory sys-

tems.

In the study of higher level perception, the work has been focused on the

representation of objects and on the connections between various physical

effects and object perception. In this category we find the perception of 3D

from a variety of physical measurements including motion, shading and other

physical phenomena.

With few exceptions, there seem to be very limited development of theo-

ries describing how the visual system might combine the output of the ana-

lyzers to form the representation of visual objects. Therefore, the processes

underlying the integration of information over space represent critical aspects

of vision system. The understanding of these processes will have implications

on our expectations for the underlying physiological mechanisms, as well as

for our models of the internal representation for visual percepts.

In this project, we explored several mechanisms related to spatial sum-

mation, attention, and eye movements. The project comprised three compo-

nents:

1. Modeling visual search for the detection of speed deviation

2. Perception of moving objects

3. Exploring the role of eye movements in various visual tasks
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In the first component of this research project we examined several quan-

titative models of integration of speed information over space. In the second

component we examined several aspects of integration of motion information

underlying perception of two-dimensional and three-dimensional objects in

motion. In the final component, we examined how the visual system may

use eye movements to convert complex spatial tasks into "simpler" sequences

of subtasks. In this final report we outline our two approaches, summarize

the results, and indicate possible future directions. Many partial results of

this work have been used to guide concurrent work by Dr. Stone and Dr.

Verghese.
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2 Speed Discrimination

One way to examine how the visual system combines motion information

from different locations is to measure the ability to discriminate speed as

a function of the number, and possibly the size, of moving patches. The

general idea underlying this work is that signal (speed) discriminability is

limited by the intrinsic noise in the sensory mechanisms. The ability of the

visual system to combine information over space should, therefore, result

in improvements in discriminability. Our starting assumption is that we can

model the sensory mechanisms as efficient statistical detectors. The modeling

approach was based on signal detection theory, under the assumption that

all internal noise is dominated by that at the local sensory level. Uncertainty

then affects only the decision process and not the stimulus representation.

The empirically assessed improvements in discriminability with increasing

opportunities to sample the stimuli are then compared to those predicted

by the models. Any deviations must be interpreted as either less than ideal

efficiency in the sensory mechanisms or lack of independence.

J

w

2.1 Stimulus Representation

Any quantitative account of the experimental results in speed discrimination

requires a formal representation of the stimuli. Our objective was to account

for the data in the speed discrimination experiments carried out at NASA

Ames Research Center. The procedure in these experiments was based on

a two-interval-forced-choice paradigm (2IFC), and the observers were asked

to identify the interval with the faster stimulus velocity. A typical stimulus

was sinusoidal grating multiplied by a Gaussian window. The number of

these local motion stimuli was one of the independent variables. Since the

direction of motion was the same at all locations for both intervals, the

simplest approach was to represent the speed sensed at each location.

We assumed that the observer codes the speed of the grating in a small

neighborhood by a single random variable S_,i where x represents the loca-

tion of the stimulus and i E {1, 2} identifies the interval. We also assumed

that these random variables from different locations and different temporal

intervals are mutually independent. At the outset we also assumed that

an observer's attention to a particular location does not affect the stimulus

representation. Later in this report we reconsidered this assumption.

The distribution of these random variables F_ depends on the actual
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stimulus speeds v at the corresponding stimulus locations. For simplicity we

assumed that the actual stimulus speed determines only the expected value

of this distribution. In that case, stimulus speed will shift the expected value

of the corresponding distributions by a function that depends on the physical

speed.

In that case, the distribution of the representation is given by

Fv(s) = e[s - d(v)],

where the function d represents the internal speed scale. It is possible that

empirical results from future experiments would require a more general model

in which the internal noise depends on the sensed speed. In that case the

model would have to be generalized to

Fv(s)=F j

In order to make numerical predictions for the shape of the psychometric

functions, we needed to assume a particular shape for the underlying distri-

butions of the sensory representation. A typical assumption made by most

researchers is that the underlying distribution of S is normal, i.e.,

1 f;_ ___d_=__2Pr{S < s} - _r_'_ oo e-_ _ dr. (1)

Although a normal distribution is frequently used in psychophysical models,

there are other distributions that might be more convenient for the speed

discrimination experiments. For example, if the model is based on detection

of maxima, it is more appropriate to assume that the underlying distributions

are Weibull or double exponential, depending on the range of the random

variable. The double exponential distribution can be expressed in a closed

form as

P {s < s}= (2)
The form of a double exponential distribution is illustrated in Figure 1.

The double exponential distribution is similar in shape to the Gaussian dis-

tribution. In practice it is difficult to distinguish empirically between the

Gaussian and the double exponential distributions. We used the double ex-

ponential here because it has a convenient property that is useful for the

calculation of the distribution of a maximum of a collection of identically

distributed random variables.
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Figure 1: Double exponential distribution function shifted by log log2 in

order to be centered.

2.2 Optimal Observer

Given the stimulus representation by a collection of random variables, we

assumed that the values of these random variables on each trial are used by

the human observer to perform the speed discrimination task. The develop-

ment of an optimal observer model requires assumptions about the amount of

prior information that the observer can use to make the judgment. First, we

consider an optimal observer with complete knowledge of the distributions

and prior probabilities. An objective of an ideal observer is to minimize er-

rors. Such an observer will make decision by computing the likelihood for

each response alternative or hypothesis, and choose the one with the highest

posterior odds. Thus, the optimal response r corresponds to the hypothesis

Hr, where

r = ar gmaxp {Pr {Observation[ Hp }}. (3 )

To compute predictions of the model, we must evaluate the likelihood of each

of the two alternative hypotheses for different number of moving patches in

each interval.

2.3 Single Stimulus in Each Interval

In a simple 2IFC task, an observer is confronted with two stimuli, presented

in separate temporal intervals. His task was to determine the interval with

the greater stimulus speed. The observer then entertains two hypotheses, H1

and /-/2, corresponding to the two possible locations of the faster stimulus.
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We model this case by assuming that the sensory representation comprises

two observations, S_,1 = s_,l and Sx,2 = sx,2, and the observer responds "1"

if the likelihood

A= Pr{s_,l,s_,2]gl} > 1. (4)
Pr{sx,l,s_,2lH2}

If the probability of the faster stimulus in the first interval is p, then

the performance of this model is given by the probability of an erroneous

response

Pr{Error} =p Pr{A < l[vx,1 > v_,2} + (1-p)Pr{A > 11v ,1< v_,_}. (5)

If the faster stimulus is equally likely to be in both intervals, the probability

of error is equal to the probability that the faster stimulus gives rise to a

smaller sensory representation. Thus, the probability of error for the case

when v_,l > v_,2 is given by the probability that S_,1 < S_,2, or equivalently

Pr{Sx,1 - Sx,2 < 0}.

In order to predict a numerical value of the probability of error for an ar-

bitrary values of v, i.e., a psychometric function, we must make assumptions

about the underlying distributions. At this point we could assume either

normal or double exponential distributions. In either case, the distribution

of the difference can be easily calculated. For the normal distribution, the

difference (S_,I - S_,2) is distributed normally, with the variance equal to the
sum of the variances of the two random variables. In the case of a double ex-

ponential, the difference has a logistic distribution. In that case the resulting

psychometric function is the upper curve shown in Figure 2.

2.4 Multiple Stimuli

For the case with multiple stimuli, the observer views several simultaneous

patches of moving gratings presented in each interval. His task is to identify

the interval in which at least one of the stimuli was faster than the remaining

ones. With more than a single stimulus presented in a given interval, there are

several different possible conditions. These conditions differ in the number

of "faster" stimuli presented in the "target" interval. In this section, we

consider the response process of an observer in different stimulus conditions.

F_
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Figure 2: Resulting psychometric functions. The upper curve represents the

results of 2IFC with one stimulus in each interval. The lower curve represents

the psychometric function for 2IFC with two stimuli in each interval.

2.4.1 One-in-four Stimuli

First we consider the case where n stimuli are presented, but only one of

them is potentially a target. First we consider a detector that would make

the minimum possible number of errors given the stimulus representation

described above.

Optimal Detector The actual speed of the stimuli is vl,i on the left, and

vl,i on the right of the fixation point. The observer responds with "1" if

A-Pr{s-'lH1} > 1, (6)
Pr { s_H2 }

where _" = (Sla, Sl,2, s2,1, s2,2) is the vector of all four observations. The

response "1" is correct if the faster stimulus occurs in the left or in the right

position. Thus, if the faster stimulus is equally likely in either interval and

location then the probability of an observation given the hypothesis that the

stimulus is in the first interval is:

Pr{_H1} = fd(sl,1)fo(Sl,2)fo(s2,,)fo(S2,2) + fo(Sl,1)fd(81,2)fo(S2,1)fo(82,2)'

(7)
where fo and fd are the distributions for the standard and the faster stimuli,

respectively. The likelihood ratio for normally distributed sensory represen-

w
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tation can be simplified by canceling identical terms to the following

e-Sl,1 d + e-S_, 2d
= > i, (8)

e -s2,1d -k e -s2'2d

where d is the effect of the target's speed.

In a similar manner, for the double exponential distribution,

exp ((1 - ed) [e -s_,l + e-S1,2])
A= >1.

exp((1 - ed) [e-S2, ' + e-_2,_])
(9)

In both cases, the likelihood ratio depends on the sum of exponential func-

tions of the observations.

Maximum Detector Since the exponential functions are convex and rapidly

increasing, a decision based on the sum these functions can be well approx-

imated by the maximum value of the random variables observed in each

interval. This approximation, frequently used in psychophysics was shown

to predict performance indistinguishable from one generated by an optimal

observer.

When the optimal observer is approximated by a maximum detector, the

advantage of the double exponential becomes important. The maximum of

a set of i.i.d, random variables with double exponential distributions is also

distributed according to a double exponential. This fact enabled us to make

predictions in closed form.

For the four-stimulus paradigm the observer is assumed to select the

maximum observation in each interval and select that interval with the higher

maximum. The resulting psychometric function shown in Figure 2 is derived

from a logistic distribution,

1
Pr{Correct} = _l÷,d_ • (10)

logl+e-

These are predictions for an experiment in which the observers' task is

to judge the interval containing the target with only one target present.

The model can be tested by modifying the task and examining the resulting

psychometric functions.

First, an experimenter may ask the observer to identify the faster stim-

ulus. That is, in addition to indicating the interval, the observer must also

w
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Figure 3: Psychometric function for identifying the fastest stimulus among

four stimuli is the lower curve. The upper curve for a two-stimulus experi-

ment is shown for reference.

identify the location of the faster stimulus. The results of this type of task

are described by a logistic psychometric function arising from a single target

and three distractors:

1
(11)

r'rl_°rrec_t = 1 + e -d+l°g3'

shown in Figure 3

Another modification involves presenting the same speed for all stimuli

in a given interval. Thus, during the interval with the faster stimulus, all

patches would move with a faster speed. During the comparison interval, all

stimulus patches would move with standard speed. The maximum detection

model predicts that the number of patches should not affect the performance

on this type of task. This is because the shift in the expected value for

the maximum standard speed and the faster are identical. The optimal

observer predicts slight improvements due to combining measurements in

each interval.

An analog of this temporal alteration task in space is one in which the

faster stimulus is presented in the same (or predictable) spatial location.

The optimal observer model examined in this section was assumed to

have prior knowledge of the underlying sensory distributions, but did not

use any prior knowledge of the stimulus presented on any particular trial.

r
L
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Thus, large variations in the "standard" speed over trials would not affect

its performance. It would be useful to determine whether human observers

use prior knowledge about the approximate stimulus speed.
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2.5 Effects of Attention

In our modeling effort so far, we have ignored any effects of attention. In the

context of detection paradigms, attentional effects are usually interpreted to

mean inhomogeneity of detection over space that is not explicable by the reti-

nal factors. A typical example of attentional effects are experiments in which

improvements in detection performance are obtained by providing observers

with various amounts of prior knowledge about the stimulus parameters. In

particular, the effects of spatial attention are demonstrated by improvements

in performance due to a a reduction of observers' spatial uncertainty prior to

stimulus presentation. These effects are often interpreted as being analogous

to covert eye movements, and some researchers explain these attentional ef-

fects as resulting from an internal controllable beam of search light that

increases contrast in the attended regions.

Because of its intangible or covert nature, attention has been difficult to

model. One plausible assumption is that attention to a particular region of

the visual field would reduce the internal noise, or alternatively, increase the

signal to noise ratio for stimuli in that region. Such models are generally

used to explain the effects of spatial uncertainty. In these models, attention

is assumed to be under a complete control of the observer and set up prior

to the presentation of the test scene.

This aspect of the experimental paradigm used to study attention is a

subject of severe criticism. In particular, the experimental paradigm used in

the study of attention rarely occurs in natural environments. We speculate

that it is very unlikely for a visual scene to change instantaneously while the

organism has a complete knowledge of the direction of his gaze. We would,

therefore, argue that in natural environments, all attentional control is made

relative to the visual scene and the stimulus. Observers confronted by the

impoverished experimental paradigms are not likely to have complete control

of their attention. Thus, even with a complete knowledge of the location of

the stimuli, the observer may sample the scene less than optimally. This

suboptimal behavior that could be modeled as additional noise, and may be

responsible for the limitations of the models.
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Recommendations

The psychometric functions for two-intervai-forced-choice experiments

would be better approximated by a logistic function or a mixture of

two logistic functions rather than by Weibull distributions.

The general empirical approach that would aid in modeling would con-

sist of finding the best fit psychometric function (underlying distri-

bution) for single stimulus in each interval at a predictable location.

Predictions for other conditions should be made using this psychomet-

ric function in conjunctions with various models of discrimination, such

as maximum detector or summation.

Comparison of the effects of spatial and temporal uncertainty would

provide the information for building models of spatial interactions.

Most models for the 2IFC procedure are based on the idea of a com-

parison of the representations between the first and second interval.

The results predicted from these models should be insensitive to the

variation of the "standard" speed. This notion that is critical to the

modeling effort, should be tested by increasing the trial-to-trial vari-

ability of the "standard" speed.

Any deviations from the predicted integration effects could be expressed

in terms of unobservable uncertainty. For example, if the addition of

stimuli within each interval provides less than expected gains in the

discriminability, the process of combination has statistical efficiency

that is less than 100%. To account for the loss of efficiency we should

investigate the possibility that human have only stochastic control over

attention that is mostly driven by the visual scene.
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3 Object Motion

In the project described in the first section we have examined the psychophys-

ical aspects of integrating near-threshold motion information over space. In

the projects described in this section, we assumed that the low level analyzers

provide estimates of local velocities, and we addressed the issue of integration

of information necessary to mediate the perception of two-dimensional and

three-dimensional objects.

3.1 Aperture Problem

The motion of an image at a given point can be sensed only along the direc-

tion of the intensity gradient in the image. This technical constraint implies

that the motion of a long line whose end-points are outside of the field of

view can be measured only in the direction perpendicular to the direction

along the line.

Prior experiments suggest that the perception of motion direction by

the visual system depends on the motion of any visible endpoints of the

line, whose motion is not ambiguous. The fact that this is true even if the

endpoints result from an occluding aperture is best demonstrated using one

or more lines moving diagonally within a rectangular aperture. Even though

the motion of each line can be measured only in the perpendicular direction,

the lines appear to move parallel to the longer side of the rectangle. This

percept, called barber pole illusion, suggests that the visual system combines

information along the extent of the line including the end points.

In general, the visual system seems to solve the problem of ambiguous

motion of a line segment, called the aperture problem, by combining motion

information across space. The integration-based approach is possible only if

the integrated points on the moving object have intensity gradient pointing in

different directions. Each integrated or fused point constrains the direction of

the object motion along the direction of the local gradient, and the resulting

perceived motion is then in the direction consistent with all these constraints.

This model for integration of information is based on the assumption

that the visual system can determine which points belong to the same rigid

object. Points, line segments, and other higher-dimensional features must

follow a rigid motion in order for their combination to disambiguate the

local velocity measurements. If a collection of local velocity measurements

can be identified to belong to a single object, it is appropriate to combine the

=--
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motion information. Thus, the fundamental question is which point velocity

measurements should be fused?

The selection of points whose motion is to be combined can be based on

various aspects of the image, including similarity of color, spatial proximity

or belonging to the same higher order feature in the image, or even having

similarities of motion. Perhaps the least controversial of these aspects to be

used for the fusion decision is for a point to be a part of the same image

feature, such an edge or a contour.

Loosely speaking, two adjacent points form a contour if the maximum

intensity gradient at each of these points is approximately perpendicular to

the line connecting the points. The direction of the contour at a point is

perpendicular to direction of the gradient. This definition of a contour does

not exclude points at which the contour sharply changes its direction.

In many natural images, a contour that belongs to a single object may

be interrupted by occlusions. Motion at the occlusion boundaries is affected

by the boundaries, and the resulting motion of these points may conflict

with the motion of the exposed object. In this situation, the visual system

should reduce, or even ignore, the contribution of the boundary points to the

overall motion determination. Experiments with stimuli that give rise to such

conflicts can potentially provide information about the decision processes

that underlie the integration.

We have previously shown that for simple motion,n such as translation,

and for simple contours such as straight lines, the visual system is capable of

integrating information from disjoint regions of the visual field. For example,

a diamond translating back and forth along the horizontal axis was viewed

through two disjoint apertures. The apertures were arranged so that the

corners of the diamond were occluded, and each aperture alone would favor

a different direction of motion. For a large range of velocities, observers

could integrate the motion into a single percept of a translating diamond.

The percept of a single object was unambiguous when the occluding edges

were visible but persisted even when the occluding edges were only implied.

For a rotational motion, the visual system has more difficulty integrating

motion information from disjoint regions. In fact when a rotating square

is viewed through several apertures the percepts is nonrigid whenever the

corners of the square are invisible. In the limit, this non-rigidity percept can

be obtained by minimally occluding the apex of an rotating corner. Thus,

it appears that the visual system is especially relying on the region of high

curvature. These regions correspond to the elementary two-dimensional (2D)

m_
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features -- corners. We refer to corners as 2D features because any 2D

rigid transformation of a corner is completely specified by the final positions

and orientations of these features. This work has been carried out with

M. Shiffrar at Rutgers University. The results of this investigation were

reported at the annual meeting of the Association for Research in Vision and

Ophthalmology [1995].

3.2 Three-Dimensional Motion

Our discussion thus far was limited to 2D motion. The problem is con-

siderably more complex when we consider motion in 3D. The increase in

complexity is due to the fact that the image of a rigidly moving 3D object is,

in general, not 2D rigid. Thus it is much more difficult to decide which points

belong to a given moving object. The simplest possible stimulus to address

this issue is a set of smoothly moving points sampled from the surface of a

rigid 3D object. The situation where a set of moving points give rise to a 3D

percept is called the kinetic depth effect (KDE).

One way to interpret the KDE is that the visual system assumes that the

points define a rigid object and then use the 2D retinal image to determine

the object's 3D coordinates. A complete 3D representation -- Euclidean

representation -- exactly specifies all interpoint distances.

There is some prior empirical evidence suggesting that the visual system

does not necessarily compute the complete 3D Euclidian representation of

the object. In fact, the human visual system may be less sensitive to the

distortions in depth than those in the frontal plane.

To investigate the complexity of the representation and the mode of in-

formation integration, we used stimuli consisting of moving points, similar

to the standard KDE stimulus. In addition to rigid 3D motion we examined

whether the observers can discriminate an affine type of motion from a rigid

type. The main result is that the affine motion was much less discriminable

from the rigid motion than the nonrigid motion with an equivalent amount of

distortion. The amount of distortion was measured in terms of total energy

that would be required to distort an elastic 3D object.

Our results suggest that the visual system uses more general approach

than a complete 3D Euclidian representation. We speculate that the process

of integration is accomplished by applying a test for a consistency with the

internal representation while it is computing it. This work has been carried

out in collaboration with D. Weinshall of Hebrew University and New York
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meeting of the Association for Research in Vision and Ophthalmology [1997].
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4 Eye Movements

In the first and second section we examined aspects of integration of informa-

tion over space within a single view, i.e., without any eye movements. The

signal detection model described can provide at best only a partial answer,

because in most situations, people can scan images with their eyes and pos-

sibly combine information obtained from different gaze directions. In some

tasks eye movements may not help very much. For example, detection of

flicker my not benefit from eye movement. In this section we report initial

analysis of the relationship between the complexity of a task and the utility

of eye movements. Most of the text in this section was published as a chapter

in a book on exploratory eye movements [1995].

A flexible, mobile sensor appears to be an essential component of most

biological vision systems. In the human visual system, mobility is achieved

by head and eye movements. The degree of importance of a manipulable

sensor to a vision system is a critical question both for students of biological

vision systems and for designers of artificial vision systems. In humans,

eye movements appear to mediate a variety of functions ranging from image

stabilization to visual search.

In this project, we examined the notion that eye movements mediate a

tradeoff between various information processing demands on the visual sys-

tem. In its most basic form, our hypothesis is that eye movements permit the

visual system to convert parallel solutions of certain tasks that would require

large amounts of hardware (or "wetware") into sequential algorithms that

require considerably less complex signal processing mechanisms, although

sacrificing processing speed. We will argue that the usefulness of sequential

algorithms will increase with the difficulty or perceptual complexity of visual

tasks.

In first part of this section we discuss several examples of perceptual tasks

and consider the potential impact of eye movements on human performance.

We note that one of the important performance characteristics affecting the

impact of eye movements is the independence of performance from stimulus

location, i.e., translation invariance. We will note that eye movements are

generally more useful for more difficult tasks in which the human visual

system is less translation invariant.

The key question in our analysis is how to determine the complexity of

any particular visual task. To answer this question, we explore the poten-

tial of a formal analysis of algorithmic complexity to estimate the perceptual
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complexity of visual tasks. Although algorithmic complexity theory is most

relevant for the analysis of computer algorithms for unbounded problems, we

suggest that it can also be used for finite problems confronting the visual

system. We accomplish this by adding constraints on the computing mech-

anism. In particular, we examine the complexity of parallel computational

networks whose depth is constrained to a small number of levels. Our analy-

ses suggest that the perceptual complexity of a task generally correlates with

the difficulty of the problem as measured by human performance on that

task.

The final section of this section (Section 4.3) presents a detailed discus-

sion of translation invariance. As we noted above, translation invariance is

a key property of the visual system that may determine the need for eye

movements.

4.1 Visual Task Performance

In this section we consider several examples of visual tasks and their percep-

tual complexity. We also discuss the role that eye movements might have in

facilitating performance. In particular, we anticipate that the effects of eye

movements on performance will depend on the ability of the visual system to

perform various visual tasks equally well at different locations of the field of

view. Finding performance to be independent of stimulus location would re-

flect translation invariance of the visual system with respect to those tasks.

The impact of eye movements on task performance, in turn, is probably

quite limited for those tasks that can be performed in a translation invariant

manner.

4.1.1 Detection

Perhaps the most straight-forward visual task is the detection of a luminous

target (e.g., luminous disk) on a dark background, as shown in Figure 4a. In

a detection experiment that consists of a sequence of trials, an observer is

asked to fixate on a fixation point at the center of the display -- indicated

by the central cross in Figure 4a. On some trials, the target is displayed for a

brief period of time at a location within the display area. On the remaining

trials, the target is not displayed at all. On each , the observer is asked to

indicate whether or not a target was present.

w
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Figure 4: Examples of various visual tasks. The cross represents the fixation

point. (a) Luminous object detected on a dark background. (b) Vernier

acuity task. (c )Continuity puzzle. (d) Parity problem.
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The ability of an observer to detect the target is generally found to depend

on the contrast between the background and the target, target luminance,

size of the target, and the distance of the target from the fixation point --

eccentricity. For luminous, clearly visible targets, the task appears to be

very easy and the observers' responses indicate nearly perfect performance.

In that situation, the target eccentricity is not a critical variable; the visual

system is fairly translation invariant, and we would not expect eye movements

to improve performance.

A very similar task involves detecting a bright disk among dark disks

(distractors) or a red disk among green ones. If the difference between the

distractors and the target is such that the target is easily detected, then the

performance is essentially independent of the target eccentricity and even

the number of distractors (e.g., Triesman and Gelade, 1980) [1980]. For

these tasks that appear to be fairly translation invariant, eye movements will

provide little additional improvement in performance. Observers can perform

these tasks without any noticeable effort or focused attention. Because of

that, such tasks are sometimes referred to as preattentive (e.g., Bergen and

Julesz, 1983) [1983].

In addition to the detection of a conspicuous target, the human visual

system can also easily perform other tasks in the periphery such as detec-

tion of rapid fluctuations in luminance over time (i.e. flicker), motion at

various eccentricities, and other. Eye movements will provide little help in

performing these tasks.

4.1.2 Masking

Adding noise to mask the target information is a useful method employed by

psychophysicists to measure the statistical efficiency of sensory mechanisms.

This experimental method is frequently referred to as a "masking" paradigm.

By manipulating the amount of noise added and measuring the decrease

in performance, it is possible to measure certain internal limitations of the

sensory mechanisms. For example, it is possible to evaluate the amount of

internal noise that limits detection (e.g., Pelli 1983) [1983].

If the target luminance contrast is decreased or the visual field is con-

taminated by noise, observers' performance will decrease in most target de-

tection paradigms. The decrease in performance will, in general, be more

pronounced for targets located further from the fixation point. This de-

pendence on location suggests that the visual system does not obey strict

w
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translation invariance. Under these circumstances, eye movements toward

the target are likely to improve performance.

In addition to the lack of translation invariance, there is some evidence

that multiple looks can improve the detectability of a masked target (Rovamo

and Virsu, 1979; Levi, Klein and Aitsebaomo, 1985) [1979, 1985]. Under

these circumstances, eye movements are likely to facilitate improvements in

performance.

It is worthwhile to note that in most detection situations, the amount

of signal (contrast increment) that is just detectable is proportional to the

amount of noise (e.g., standard deviation of the signal). A similar phe-

nomenon holds for tasks in which observers are asked to detect increments

or decrements in contrast. This type of scale invariance in psychophysics is

called Weber's Law.

4.1.3 Localization

Another important visual task is the localization of objects in the visual field.

Whereas absolute localization is relatively poor, the human visual system

is capable of making accurate relative location judgments, such as length

discrimination, e.g, Burbeck and Hadden [1993]. One way to summarize the

empirical results is that the uncertainty in judgments obeys Weber's Law.

An interesting version of the relative location judgment is a task called

vernier acuity, illustrated in Figure 4b. Subjects in the vernier acuity task are

asked to identify whether the bottom bar is to the left or to the right of the top

one. When the vernier stimulus is presented in the fovea, observers can make

these judgments extremely accurately. For example, they can discriminate

an offset in location down to 6 seconds of arc. As we shall discuss in depth

later, the performance on the vernier task deteriorates quickly as the stimulus

is moved from the central vision to the periphery.

The vernier acuity task requires the visual system to perform a more

sophisticated task than simple detection. First, it requires the detection of

both bars using luminance contrast. Second, it depends on the ability of the

visual system to compare locations of two spatially separated objects.

4.1.4 Multidimensional Tasks

Spatial relations need not be limited to the relations between two points. One

way to increase the requirements on spatial processing is to ask observers to
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judge spatial contiguity. For example, consider the task of identifying which

points are connected in Figure 4c. There are four starting points on the left of

the display and they are pairwise connected. Observers are asked to identify

the connected pairs. Although we are not aware of extensive experimental

data, our limited observations suggest that eye movements are very useful if

not essential in for this task.

Each straight line segment in the spatial contiguity task can be interpreted

as a dimension of the task. There are ways of increasing the dimensionality of

a task which do not depend on spatial location. For example, in the "parity"

task depicted in Figure 4d. the observer is asked to judge whether the number

of dark squares is odd or even. In this task, the position of the squares is

irrelevant. The parity task is similar to a counting task. The performance

on this task depends on the number of items and the area. For a limited

number of items distributed over 2 degrees in fovea, eye movements are not

very helpful Kowler and Steinman [1977]. As the area and the number of

items increase, eye movements appear to be more useful.

In these two examples of multidimensional spatial tasks, the eye position

might serve as a pointer. One possibility is that the motion of the pointed

mediates conversion of a parallel task into a sequential one which is "easier"

for humans.

L--

L

4.1.5 Speed-Accuracy Tradeoff

Although the task difficulty is a central notion of this section, we have not yet

defined the relationship between human performance and task difficulty. In

fact, an experimenter's choice of a particular empirical performance measure

can have critical implications for the assessment of task difficulty.

In psychophysical experiments, the observers' performance is typically

characterized by two measures:

1. Accuracy -- How accurate are the observers' responses.

2. Speed -- How fast can a task be accomplished

In most experimental work, researchers have typically focused on one

or the other measure. This emphasis might have undesirable consequences

because, for most tasks, there is typically a significant tradeoff between speed

and accuracy. In particular, faster responses are generally less accurate, and

slower responses are typically more accurate. A comprehensive discussion
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Figure 5: A tradeoff between speed and accuracy for two different tasks, A,
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of how these effects are critical for the interpretation of empirical results is

beyond the scope of this section, but the interested reader can refer to an

authoritative work of Sperling and Dosher [1986].

One way to represent the effects of speed-accuracy tradeoff for two dif-

ferent tasks is shown in Figure 5. Each curve in Figure 5 -- an operating

characteristic curve -- corresponds to human performance on one task. An

operating characteristic curve is obtained by repeating the same experiment,

but instructing observers to put different emphasis on accuracy or on reac-

tion time. As the observers change their strategies from focusing on accuracy

to decreasing their reaction times, they trace out a curve.

Note, that if an experimenter would perform only a single experiment

for each task, he could obtain results indicated by the two black dots. An

important implication of this example is that a definition of task difficulty

on the basis of reaction time alone, would lead to a conclusion that task A

is more difficult than task B. An examination of the operating curves leads

to the opposite conclusion. In particular, for any fixed probability of correct

responses, task B takes longer to complete than does task A. Thus, task B

is actually uniformly more difficult that task A.
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4.2 Task Complexity

In this section we consider the notion that the different tasks described in the

previous section can be characterized by an abstract measure of difficulty.

The measure that we focus on is the notion of task complexity. We will

then argue that many tasks that are too complex to benefit from using eye

movements as a way of converting complex tasks into sequences of simpler

ones.

4.2.1 Theory of Complexity

One appealing approach to describing task difficulty is the mathematical

notion of complexity. A comprehensive introduction to complexity theory is

well beyond the scope of this section, but we will present certain fundamental

concepts that will be useful in our later discussions of the complexity of visual

tasks. A clear presentation of some of these concepts can be found in Cover

and Thomas [1991].

Loosely speaking, the complexity of an object is the shortest binary string

(or program) that completely specifies or reproduces the object. We intro-

duce the notions of complexity in the following examples. Consider, two

binary n x n images shown in Figure 6.

The left image can be described by specifying the rectangle comprised of

dark squares. This description would require on the order of 2 log n bits, i.e.,

two integers describing the corners of the rectangle. In contrast, the image

on the right would probably require nearly n bits to specify. According

to this analysis, the left image is more complex than the right one. More

formally, the complexity K of a string x is the minimum length program p
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that generates x using computer 5t.

Ku(x)= min l(p)
p: u(p)=z

The analysis of the example in Figure 6 was based on an assumption

that the second image is one of 2'_2 possible images. As it turns out the

right image can be described as a repeated sequence y = {0101100} that was

written horizontally and wrapped around. The sequence y can be thought of

a program that was used to generate the image. The length of the program

required to generate the entire image is the length of y, i.e., l(x) = 5 + m

where m is the length of a small program specifying how y is used to generate

the image. This type of efficient representation, however, can be used for a

relatively small proportion of possible images. If all 2"2 images are equally

likely there is no savings in the length of representation.

This example illustrates that the length of the description depends on the

computer, data representation, and possible data. If/g and .A are two com-

puters sufficiently powerful (i.e., universal) computers, then the complexity

of x can differ by a constant independent of the length of x,

K.a <_ Ku(x) + c.

The constant c represents the length of a set of instructions that programs

computer .A to behave as computer L?.

Within this framework, the complexity of string x of n elements can be

written as

where l(x) the length of the description of x, and c is the length of a program

needed to convert one computer to another.

One of the aims of the theory of complexity proposed by Kolmogorov

[1965], Solomon [1964], and Chaitin [1966] was to investigate the algorithmic

complexity of very large objects, n _ co. In that case the finite constant c

can be ignored. For our purpose, however, the size of the constant c is likely

to be significant because it represents constraints arising from the specific

mechanisms underlying the human visual system.

We will, therefore, examine some specific mechanisms and the effect of the

constraints on the complexity of the visual problems discussed in Section 4.1.

Before we proceed to discuss the specific architectures, we would like to

note that there is a close connection between complexity theory and infor-

mation theory. It should be apparent from the examples in Figure 6 that
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the description of an object depends on the number of other objects that

must be distinguished. For example, the number of bits required to describe

an integer in a computer depends on the largest possible integer N for the

particular machine, and is equal to l(x) = log N. This number of bits is

required to distinguish N different integers.

A very closely related notion is the entropy of random variables in infor-

mation theory. The entropy of a random variable X that takes on values

from a set X is defined by

H(X) = - __, p(x) log(x)
xEX

If each value of an integer X is equally likely, then the entropy of X is equal

to _logN. In general, the entropy of a sequence of N random variables is

approximately equal to the expected value of Kolmogorov complexity divided

by N (Cover and Thomas [1991]), i.e.,

1E(XI,X2,...,XN[N) ,.w,H(X).

This fact can be useful in relating the complexity of visual tasks to the

accuracy in human performance.

4.2.2 Capacity of Constrained Parallel Machines

As we noted above, for finite problems, the length of the computer-specific

program c might be an important component of the overall complexity of a

problem. Thus, for most of visual tasks, the visual system architecture and

stimulus representation system will significantly affect the task complexity

(difficulty). This effect of architecture on problem complexity is commonly

used to infer aspects of the structure of the visual system by measuring the

difficulty of different visual problems.

Our analysis here is based on an alternate approach. We start by assum-

ing a two-layer parallel structure for the system architecture and examine its

implications on the complexity of visual tasks. Because in many laboratory

visual tasks, the input image and observers' responses are binary, we first

assume an architecture of a Boolean machine based on Boolean algebra or

logic rules (i.e., conjunctions, disjunctions and negations). Subsequently, we

consider a more general extension of the Boolean machine based on neural

networks.

m
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Any Boolean function can be represented in Disjunctive Normal Form

(DNF). DNF consists of disjunctions (OR) of binary variables combined by

conjunctions (AND). An example of a DNF representation for three variable

has the form:

y(:_, x_, _) = (x_n :_n _) u (_ n x_n _) u ...,

where xi are Boolean variables, the bar represents negation, and A and U rep-

resent conjunction and disjunction, respectively. For example, an exclusive

OR (XOR) can be written as

y(:_,,_) = (:_,n x_) u (_ n :_). (12)

The building elements (basis functions) for boolean networks are single-

valued boolean functions which can be in turn implemented by switching

circuits consisting of AND and OR gates, and negations. DNF is then rep-

resented by two layers of gates -- the first layer consists of AND gates and

the second layer is a single OR gate. The complexity of these machines (i.e.,

the length of a "program") is defined by the number of gates and number of

connections.

A DNF Boolean machine with an unlimited number of gates and connec-

tions represents a parallel machine that can compute all boolean functions.

Although DNF is universal, there are several reasons why it is not the most

desirable way to implement computations in practice. First, DNF is typically

the most complex way of representing a function. There are many functions

that could be computed by combinations of considerably fewer gates than

prescribed by the complexity of DNF. Second, a DNF representation must

in general be extended to more than two layers in order to accommodate

constraints on fan-in, fan-out and connectivity.

Because switching circuits are fundamental components of digital com-

puters, much effort has been devoted to evaluate complexity and finding ways

to simplify implementations of Boolean functions, see for example Wegener

[1987]. Many techniques have been developed to take advantage of particular

properties of Boolean functions to be minimized. The results of these efforts

suggest that major simplifications are achievable for functions that have cer-

tain properties, such as symmetry or monotonicity and those functions that

are not completely specified, i.e., those that include many Don't Cares.

We can turn to the problem of estimating the complexity of the visual

tasks illustrated in Figure 4 if we assume that all pixels are binary -- black

w
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or white. We also assume that the number of layers for processing is limited

to two in order to minimize processing time.

The simple detection would require a single OR combination of all binary

pixels -- that computation could be accomplished with complexity on the

order of O(n). The vernier acuity task shown in Figure 4b requires, in general,

a comparison of all pairs of pixels; thus, the complexity of the vernier task

is on the order of O(n2). Both of these computations can be accomplished

within two or three layers of gates. In contrast, the complexity for a parallel

computation of connectivity and parity require exponential complexity for a

two-layer circuit. Therefore, this type of computation would be limited to

a relatively small field of view, and a sequential type of algorithms may be

more desirable. Before we consider a sequential approach, we must ascertain

that these conclusions were not the result of limitations due to a binary

representation and computation. We will, therefore, examine a more general

approach based on adaptive (neural) networks.

In order to extend the above results to continuous inputs, we consider a

class of machines based on a network of units that compute a linear combina-

tion of the inputs. The basis functions computed by the units are monotone

nonlinear transformations of weighted linear combinations of their inputs.

We call these networks adaptive because the parameters of the network can

be adjusted in response to the performance of the network on a given task.

If the nonlinear transformation is a step function and the inputs are bi-

nary the adaptive networks reduce to the Boolean machines described above.

Thus, any Boolean function can be computed by a machine composed of two

layers of these units.

The universality of the adaptive networks has been first put forth by

Kolmogorov [1957], who demonstrated that with an appropriate choice of

the nonlinear transformations, it is possible to approximate any continuous

function with arbitrary accuracy using three layers of units 1

For the purpose of analysis of the visual tasks, the adaptive networks must

behave as classifiers. This is a natural function of the adaptive networks.

In fact, for continuous inputs, the linear sum followed by a step-function

(threshold) behaves as a classifier. In particular, these linear threshold units

(LTU) compute linear discriminant functions. A two-dimensional example

1There are other bases (units) to model computation. For example, another useful
basis involves radial basis functions. The overall complexity arguments will generalize to

these bases.
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Figure 7: Classification in a two dimensional feature space. A linearly sep-

arable problem is shown in (a) and one that can't be solved by a linear

combination of features is shown in (b).

is shown in Figure 7. Each input dimension represents the amount of the

corresponding feature present at the input. Objects to be classified are rep-

resented as points in the feature space. The classification is represented by a

surface or surfaces that separate the feature space into subsets corresponding

to object-categories.

The separating surfaces are called decision surfaces and are generated

by discriminant functions characterizing these surfaces. Figure 7 illustrates

two simple two-dimensional feature spaces with two classes of objects to be

distinguished. For example, a linear threshold unit can classify its input

space into two regions separated by a hyperplane.

The complexity of a task is again specified by the number of operations

which correspond, in the case of adaptive networks, to the number of units

and number of connections. In the case of a classifier, there is an alternative

way to specify complexity -- in terms of the complexity of the discriminant

surfaces required to perform the categorization task.

For example, the simplest class of problems that can be solved using a

single linear threshold unit is called linearly separable. A useful analysis of

various visual tasks, was published by Minsky [1969]. They classified tasks

in terms of the highest order of a predicate 2 that is required to compute

2The order of predicate in logic is in terms of n-ary predicates
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a correct response. In a simplified interpretation of their results, the order

of a predicate represents the number of pixels that need to be considered

simultaneously in order to perform the task.

The order of predicate is often directly related to the complexity of the

machine. For example, according to Minsky and Papert's 1969 analysis,

linearly separable problems correspond to first order predicates. That means

that each pixel's contribution to a decision is independent of other pixels and

the decision can be performed by summing of the contribution of each pixel.

Thus, linearly separable tasks can be accomplished by a single layer LTU

and their complexity is typically on the order of O(n).

We can now turn back to the analysis of the visual tasks presented in

Section 4.1. The detection of the presence of a luminous point on a dark

background is a first order predicate, and can be accomplished by a single

sum over the image. The sum will be independent of the location of the

target location, and, therefore, this algorithm is translation invariant.

A different situation arises for the complexity of masking tasks. In a

typical masking task, noise is added to each pixel and we cannot assume

that the noise variance and the signal values are known exactly. An optimal

way to perform a target detection is based on the comparison of each pixel to

a number of its nearest neighbors. To perform this detection in a translation

invariant manner increases the complexity of the detection task by a factor

determined by the size of the neighborhood used for the comparison.

For visual tasks that require assessment of a length or distance, at least

two pixels are required to compute it. Thus, vernier acuity, for example, is

a second order predicate. Finally, to determine continuity of a contour or

a parity of points requires simultaneous computation on all of the pixels or

"features" in an image. For an adaptive network limited to two or three lay-

ers, the number of computations is exponential in the number of pixels. Thus,

these results are consistent with those obtained for the Boolean machines.

When limited to a few layers of computation units, there are problems like

connectivity or parity that are exponentially difficult. We will now discuss

the effect of allowing a large number of layers, or more simply, sequential

algorithms.

4.2.3 Sequential Machines

With only two layers, visual tasks such as continuity or parity are expo-

nentially complex. For example, a machine that determines parity and is
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Figure 8: Disjunctive Normal Form of a combinatorial circuit to determine

the parity of the input. The light connections represent negated inputs, the

first layer are AND gates and the second layer are OR gates.

restricted to two layers (e.g., disjunctive normal form or DNF) would require

exponentially many gates and connections, as illustrated in Figure 8.

Because the particular properties of the parity function, it is possible

to find more efficient combinatorial circuits by permitting more layers of

gates. For example, the parity function can be computed with the order of

O (5(n - 1)) gates arranged in n- 1 layers. The resulting circuit is equivalent

to a sequential application of a very simple function such that each level of

gates corresponds to a time step for that sequential machine. The only

complication of a sequential machine is that it must have a memory for the

output of its prior output or state.

In particular, the parity y(n) after seeing n inputs can be expressed as a

function of the parity after seeing only n - 1 inputs and the current input

Xn,

y(n) = 9(n- 1)nz. uy(n- 1) nz-.. (13)

In this simple case the state (memory) is the output y. A corresponding two-
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Figure 9: Sequential machine for the computation of parity for arbitrarily

large inputs in the form of a simple logic circuit implementing the state

transition diagram.

state sequential machine, illustrated in Figure 9, could determine the parity

of an arbitrarily large input in time proportional to the size of the input.

The sequential machine in this example was much simpler than even the

simplest corresponding parallel machine. But even more important is the

fact that the sequential machine could perform the task, i.e. to determine

parity, for input of any size without prior knowledge of the size.

In general for some of the computationally "difficult" tasks for parallel

machines with limited number of layers, it is possible to construct sequential

machines that can perform the task in polynomial time. We hypothesize that

when the complexity of a visual task exceeds the capacity of the available

parallel mechanisms, the visual system attempts to convert the parallel task

into a sequential one. Although this conversion can be performed by eye

movements, it is possible that this tradeoff is also mediated by covert atten-

tional processes. In either case, the sequential approach which is typically

more flexible and requires a less complex mechanism, takes generally longer

than a parallel one.

4.2.4 Theoretical Speed-Accuracy Tradeoff

The discussion thus far has been based on the assumption that the results of

the computations are always correct. Under this assumption, the complexity

of a task is given by the minimum number of steps required to arrive at the

correct answer. For sequential algorithms the number of required computa-
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tions, and the thus the time required to complete a task, can be used as a

direct measure of task complexity.

We noted in Section 4.1 that an assessment of human task difficulty must

include both accuracy and reaction time because observers have a choice of

strategies trading off speed and accuracy. The same type of tradeoff confronts

an active sensor.

To interpret accuracy data within the complexity framework we must

relate the probability of errors to the task complexity. One possible way to

bridge the gap between accuracy and complexity is based on rate distortion

theory (see for example Cover and Thomas [1991]) used in information coding

and communication.

Rate distortion theory is applicable in situations where an errorless code

is either impossible or impractical. For example, the representation of arbi-

trary real numbers in digital computers with a finite word length is generally

contaminated by errors. Obviously the size of the error will decrease with in-

creasing length of the binary representation. A designer must make a tradeoff

between the complexity of the description (length of binary words) and the

resulting error.

We must note that the quantitative measure of error depends on a some-

what arbitrarily selected distortion measure. The theoretical analysis is use-

ful to the extent that the distortion measure such as Hamming distance or

squared error is relevant to the task.

Loosely speaking,the relationship between the expected distortion D and

the length of the optimally selected description is called the rate distortion

function R(D). If the code is optimized with respect to the selected distortion

measure, it is possible to show that the rate distortion function is equal to

the mutual information between the coded and the original representations

(Cover and Thomas [1991]).

The exact shape of the rate distortion function depends on the distribu-

tion of the random variables, as well as on the selected measure of distortion.

In situations in which the underlying distribution is Gaussian, and the dis-

tortion measure D is square error, the rate distortion function is given by

1 _-2

R(D) = _ log =-_,/_2

2 is the variance of the underlying distribution, andwhere R is in bits, crs
2O<D<_a s.
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We entertain the hypothesis that the rate distortion function may account

for a portion of the observed speed accuracy tradeoff. Suppose that the vi-

sual system refines its estimate of a normally distributed stimulus parameter

over time by a binary search procedure. Then the response time would be

proportional to the rate, i.e., T = aR, where a is a positive constant. In

that case, the variance in the stimulus representation after T seconds would

be

----GsZ _-

where a_ is intrinsic visual system noise. The representation variance is

the variability that would determine the stimulus discriminability and the

response error rate.

Although it is not very likely the rate distortion function would account

for the empirically observed speed-accuracy tradeoff, it may be a useful to

analyze peripheral coding and processing of visual stimuli.

w

Z
w

r
E--
w

4.3 Translation Invariance

It is probably not surprising that continuity and parity tasks over a large

visual field would benefit from eye movements. In the this section, however,

we argue that even much less complex task, such as vernier acuity can benefit

from a sequential approach that would compensate for the lack of translation

invariance of the the visual system.

The capability of translation invariant spatial pattern recognition is of

great importance to mechanical and biological visual systems. A translation

invariant system is capable of recognizing patterns independently of their

position in the visual field, as well as determining their position. The cost of

translation invariant pattern recognition is reflected by an increase in com-

plexity because any analysis must be performed at all locations in the visual

field. For example, for the vernier acuity task described in Section 4.1 the

complexity is on the order of O(n2). The complexity due to translation invari-

ance might be quite high if the number of different patterns at any location

increases. It would be useful to determine to what extent the human visual

system obeys translation invariance.

Before we proceed any further, we must define translation invariance

in terms of observable measures from behavioral experiments. A definition

based on the ability to identify an object in the central and peripheral visual

fields is not quite sufficient. Such a definition depends on the ensemble of
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patterns used to test the invariance. For example, consider a letter identifi-

cation task where observers are asked to identify a large capital letter "A" as

different from the letter "B." The differences between the letters are so great,

that the task is performed perfectly regardless of considerable distortions to

the images. A more sensitive measurement (stricter definition) is required to

determine whether the visual system is translation invariant.

A more strict definition of translation invariance can be based on the

probability of discriminating between two similar objects. Let's denote the

probability of discriminating between stimuli, defined by their local spatial

parameters a and b located at eccentricity r, by Pr {a, b; r}. The local pa-

rameters might represent dimensions or relative positions of object features.

For example the horizontal displacement of the lines could represent the stim-

ulus in the vernier task. It is important that the value of the parameters a

and b are chosen such that the discrimination probability is neither zero nor

one. Such a choice of stimuli assures that they are not too different (always

discriminable) nor too similar (indiscriminable). If a visual system is strictly

translation invariant then

Pr{a, b; r} = Pr{a, b; 0}. (14)

That is, the probability of correctly distinguishing between a and b should

be independent of the location in the visual field.

Given this definition, it is obvious that the human visual system is not

strictly translation invariant. In addition to the everyday experience that

peripheral vision is not as acute as central vision, the lack of translation

invariance is suggested by the nonuniform distribution of receptors in the

retina. Most of the receptors are located in the central area of the retina

called the fovea. The density of the receptors decreases rapidly with distance

from the fovea.

Despite this severe violation of our strict definition of translation invari-

ance, it is possible that the visual system is essentially translation invariant

except for the non-uniform peripheral representation. This non-uniformity

could be achieved by a spatial transformation, such as dilatation, whose

parameters would depend on the eccentricity. In practice, such a transfor-

mation could be achieved by reducing the density of peripheral sampling and

the corresponding representation of the retinal image. There appears to be

some evidence of this type of transformation in physiological data.

If the lack of translation invariance can be fully accounted for by the

peripheral representation, as some investigators have proposed, it should be
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Figure 10: Vernier acuity task scaled for eccentricity to restore performance

possible to compensate for the loss of spatial sensitivity due to translation

to the periphery, by a change in scale of the objects. Thus, two objects can

be equally discriminable in the periphery as they are in the fovea provided

that they appropriately enlarged. Mathematically, we restore translation

invariance by enlarging each object by the same factor re(r):

Pr {m(r)a, m(r)b; r} = Pr {a, b; 0}. (15)

An example of restoration of translation invariance is shown in Figure 10.

The scaling function m(r) represents the derivative of the visual angle at

eccentricity r with respect to the corresponding extent in the internal repre-

sentation. Following the work of Anstis [1974] there are many studies con-

cerning the performance of spatial discriminations in periphery (Levi [1985]).

The results from various studies with different stimuli s are in general agree-

ment that the scaling functions ms are linear functions of the eccentricity, as

shown in Figure 11. The difficulty of the task is expressed in terms of just

noticeable differences (JND) which represent estimates of the physical offset,

delta, that is required for 75% correct responses (the solid line). The scaling

function for JNDs can be expressed as linear functions of eccentricity

r

ms(r) = 1 +--, (16)
rs
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Figure 11: Plot of Just Noticeable Differences (JND) for a vernier acuity task

as a function of the eccentricity of the vertical bars (solid line), and detection

of grating (dashed line). JND is defined as the physical offset required for

75% correct discrimination on the vernier acuity task, and the contrast for

75% detection of sinusoidal gratings. Both functions were normalized to be

equal to unity at the center of the visual field (fovea).

where r_ is a positive constant. The linearity of the function m, however,

is neither necessary nor sufficient for the existence of translation invariance.

That is, the scaling function m could be any positive function of eccentricity.

Recently, more careful investigations of the validity of translation invari-

ance have been undertaken. To investigate whether stimulus scaling can

compensate for a translation to the periphery requires that all spatial dimen-

sions of the stimulus be scaled equally. Cunningham [1986] have examined

the effect of the gap in the vernier acuity target, as shown in Figure 4b.

The resulting performance as a function of gap size for stimuli presented at

different eccentricities is shown in Figure 12. The fact that the performance

at different eccentricities, as functions of gap size, are parallel can be used to

prove that the visual system is translation invariant after appropriate scaling

of all dimensions of the stimuli by the function m.

Whereas these results are encouraging in terms of restoring translation

invariance, there is considerable evidence that the scaling function m depends

on the specific task. We hypothesize that the scaling function m depends on

the task complexity. In particular, the simpler, first order predicate spatial

tasks seem to require lower scaling factors m than do the more complex
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Figure 12: Plot of Just Noticeable Differences (JND) from a vernier acuity

task as a function of the gap between the vertical bars. The parameter is the

eccentricity of the stimulus (on nasal retina).

tasks. For example, performance on detection of the presence of a sinusoidal

grating in the periphery deteriorates with eccentricity at a slower rate than

does the performance of vernier acuity. In general, the performance on tasks

requiring second and higher order of predicates deteriorates more rapidly

with eccentricity.

To summarize, the human visual system can recognize patterns in the

periphery in a similar manner as in central vision, but with lower spatial

acuity. This is because a uniform increase in the size of objects is equiv-

alent to a corresponding reduction in spatial frequencies. Thus, the visual

system can be thought of as performing the preliminary, low acuity analysis

in the periphery, and a high acuity analysis in central vision. The peripheral

analysis provides the low acuity analysis and approximate information on

the location of the object's image. This preliminary peripheral analysis is

followed by a precise pattern analysis in central vision after the image of the

object is centered using eye movements. Thus, a parallel pattern recognition

task, requiring a large visual field and a high precision, is converted to a

serial process consisting of locating, centering, and then analyzing individual

patterns.

m_
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4.4 Summary of Eye Movements Effectiveness

Our objective of this part of the project was to examine how eye movements,

mediate a tradeoff between performance and cost requirements on the visual

vision system. The cost is in the complexity of physiological processing, the

time, and the accuracy required to perform various tasks.

In the conclusion we would like to reiterate the three main points of our

discussion:

, We argued that computational complexity of a particular tasks can

be used to assess the difficulty of such a task for the human visual

system. Although the full power of the Kolmogorov-Chaitin complexity

theory may not be applicable directly, the general approach involving

the complexity of individual objects was shown to be potentially useful

for anticipation of human observers performance.

, Eye movements can be used to mediate a tradeoff between the com-

plexity of a fixed, but fast pattern recognition machine and that of a

sequential and slow, but flexible pattern recognition system. For com-

plex visual tasks, a parallel solution would require too much parallel

hardware that would have to be continuously adapted to each task. The

visual system appears to economize on the number of parallel compu-

tations by taking advantage of the fact that sequential algorithms are

actually preferable for some tasks. For those tasks, eye movements

(or a moving camera) can provide a simple and effective means for

converting computationally complex parallel tasks into serial ones.

, Although the human visual system is, strictly speaking, not translation

invariant, it can be transformed to one by a particular scaling (dilata-

tion) transformation. The resulting representation provides a conve-

nient tradeoff between requirements for high accuracy (high complex-

ity) capabilities, and the size of the visual field that can be monitored

in parallel.

We hope that our discussion will motivate more rigorous analyses of the

performance of the human visual system. The results of such analyses would

improve our understanding of the human visual system and at the same time

provide engineers with new directions for designing artificial vision systems.
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